ALLAMA IQBAL OPEN UNIVERSITY, ISLAMABAD
 (Department of Mathematics \& Statistics)

WARNING

1. PLAGIARISM OR HIRING OF GHOST WRITER(S) FOR SOLVING THE ASSIGNMENT(S) WILL DEBAR THE STUDENT FROM AWARD OF DEGREE/CERTIFICATE, IF FOUND AT ANY STAGE.
2. SUBMITTING ASSIGNMENTS BORROWED OR STOLEN FROM OTHER(S) AS ONE'S OWN WILL BE PENALIZED AS DEFINED IN "AIOU PLAGIARISM POLICY".

Course: Mathematics-I (1307)
Level: F.A/F.Sc
Total Marks: 100

Semester: Autumn, 2013

Pass Marks: 40

ASSIGNMENT No. 1

(Units 1-5)

Note: Attempt all questions, each question carry equal marks

Q. 1 a) Simplify: i. $(-a i)^{4}, a \in R \quad$ ii. i^{-31}
b) Prove that $\sqrt{5}$ is an irrational number.
c) Define complex numbers and separate the following into real and imaginary parts.
(i) $\frac{i}{i+i}$
(ii) $\frac{(-2+3 i)^{2}}{(1+i)}$
Q. 2 Solve the following systems of homogeneous linear equations.
(i) $x+2 y-2 z=0$
$2 x+y+5 z=0$
$5 x+4 y+8 z=0$
(ii) $\begin{aligned} x_{1}-2 x_{2}-x_{3}=0 \\ x_{1}+x_{2}+5 x_{3}=0 \\ 2 x_{2}-x_{2}+4 x_{3}=0\end{aligned}$
(b) If
$A=\left[\begin{array}{c}1 \\ 1+i \\ i\end{array}\right]$, find $A(A)^{t}$
(c) Solve the following system of linear equations by Cramer's rule.
(6)

$$
\begin{gathered}
2 x_{1}-x_{2}+x_{3}=8 \\
x_{1}+2 x_{2}+2 x_{3}=6 \\
x_{1}-2 x_{2}-x_{3}=1
\end{gathered}
$$

Q. 3 (a) Show that the set $\left\{1, \omega, \omega^{2}\right\}$, when $\omega^{3}=1$, is an Abelian group w.r.t ordinary multiplication.
(b) Prove that: $p \vee(\sim p \wedge \sim q) \vee(p \wedge q)=p \vee(\sim p \wedge \sim q)$
Q. 4 (a) If $\alpha_{,} \beta$ are the roots of the equation $a x^{2}+b x+c=0$, form the equation whose roots are
(i) $\alpha^{3}{ }_{,} \beta^{3}$
(ii) $-\frac{1}{\alpha^{3}},-\frac{1}{\beta^{3}}$
(iii) $\alpha+\frac{1}{\alpha}, \beta+\frac{1}{\beta}$
(b) If ω is a cube root of unity, form an equation whose roots are 2ω and $2 \omega^{2}$.
Q. 5 (a) If $\mathrm{A}=\left[\begin{array}{cc}i & 1+i \\ 1 & -i\end{array}\right]$, show that
(i) $\mathrm{A}+\left(\overline{\mathrm{A})^{t}}\right.$ is hermitian \quad (ii) $\mathrm{A}-(\overline{\mathrm{A}})^{t}$ is skew hermitian
(b) Show that the roots of $(m x+c)^{2}=4 a x$ will be equal, if $c=\frac{a}{m} ; m \neq 0$

ASSIGNMENT No. 2

(Units 6-9)

Note: Attempt all questions, each question carry equal marks

Q. 1 (a) Resolve the following into partial fractions:
(i) $\frac{2 x-5}{\left(x^{2}+2\right)^{2}(x-2)}$
(ii) $\frac{4 x^{2}+3 x^{3}+6 x^{2}+5 x}{(x-1)\left(x^{2}+x+1\right)^{2}}$
(b) If $\frac{x}{a}, \frac{I}{b}$ and $\frac{I}{a}$ are in A.P., Show that $b=\frac{2 a c}{a+c}$
Q. 2 (a) If a^{2}, b^{2} and c^{2} are in A.P., show that $\frac{1}{b+a^{2}}, \frac{1}{c+a^{a}}, \frac{1}{a+b}$ are in A.P.
(b) Find three consecutive numbers in G.P whose sum is 26 and their product is 216.
(c) For what value of $n, \frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ is the positive geometric mean between a and b ?
Q. 3 (a) If the numbers $\frac{1}{k}, \frac{1}{2 k+1}$ and $\frac{1}{4 k-1}$ are in harmonic sequence, find k ?
(b) Find the sum to infinity of the series; $r+(1+k) r^{2}+\left(1+k+k^{2}\right) r^{3}+\ldots r$ and k being proper fractions. (10)
Q. 4 (a) Two coins are tossed twice each. Find the probability that the head appears on the first toss and the same faces appear in the two tosses.
(b) A natural number is chosen out of the first fifty natural numbers. What is the probability that the chosen numbers is a multiple of 3 or of 5 ?
(c) Prove that ${ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}$
Q. 5 (a) Use mathematical induction to prove $2+6+18+\cdots+2 \times 3^{n-1}=3^{n}-1$ for every positive integer n.
(b) Find $6^{\text {th }}$ term in the expansion of $\left(x^{2}-\frac{3}{2 x}\right)^{10}$.
(c) If x is very nearly equal 1 , then prove that $p x^{p}-q x^{q} \approx(p-q) x^{p+q}$

